منابع مشابه
Quasi-flats and Rigidity in Higher Rank Symmetric Spaces
In this paper we use elementary geometrical and topological methods to study some questions about the coarse geometry of symmetric spaces. Our results are powerful enough to apply to noncocompact lattices in higher rank symmetric spaces, such as SL(n,Z), n ≥ 3 : Theorem 8.1 is a major step towards the proof of quasiisometric rigidity of such lattices ([E]). We also give a different, and effecti...
متن کاملSymmetric flows and Darcy’s law in Curved Spaces
We consider the problem of existence of certain symmetrical solutions of Stokes equation on a three-dimensional manifold M with a general metric possessing symmetry. These solutions correspond to unidirectional flows. We have been able to determine necessary and sufficient conditions for their existence. Symmetric unidirectional flows are fundamental for deducing the so-called Darcy’s law, whic...
متن کاملInfinite dimensional non-positively curved symmetric spaces of finite rank
This paper concerns a study of three families of non-compact type symmetric spaces of infinite dimension. Although they have infinite dimension they have finite rank. More precisely, we show they have finite telescopic dimension. We also show the existence of Furstenberg maps for some group actions on these spaces. Such maps appear as a first step toward superrigidity results.
متن کاملExotic smooth structures on nonpositively curved symmetric spaces
We construct series of examples of exotic smooth structures on compact locally symmetric spaces of noncompact type. In particular, we obtain higher rank examples, which do not support Riemannian metric of nonpositive curvature. The examples are obtained by taking the connected sum with an exotic sphere. To detect the change of the smooth structure we use a tangential map from the locally symmet...
متن کاملGeneralized Symmetric Berwald Spaces
In this paper we study generalized symmetric Berwald spaces. We show that if a Berwald space $(M,F)$ admits a parallel $s-$structure then it is locally symmetric. For a complete Berwald space which admits a parallel s-structure we show that if the flag curvature of $(M,F)$ is everywhere nonzero, then $F$ is Riemannian.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Manuscripta Mathematica
سال: 1996
ISSN: 0025-2611,1432-1785
DOI: 10.1007/bf02567965